
or: How I Learned to Stop Worrying and Love the
Web

UnCommon Web

• Marco Baringer <mb@bese.it>

• http://common-lisp.net/project/ucw

The Problem

• The tools don’t allow us to, directly, say
what we think.

• HTTP, which is an asynchronous and
stateless protocol, considers every request/
response as an independant object.

• Developers consider every request and
response as a part of a sequence of
interactions.

It’s HTTP’s fault

What do we want to say?

An application is not a set of
distinct pages as much as a
set of sequences of pages.

Example: First we show the
shopping cart page, then, if
the user wants, they can
continue to the payment info
page, finally they can view
the confirm order page.

Cart

Payment

Confirm

• When developers think about an application
they think in terms of what happens before
and after a particular page.

• Every page in the application represents a
point within a well defined sequence and
has a past and a future.

So What?

• Continuations are a tool to work with the
“future.”

• They allow us to express, directly, what will
happpen after a user has seen a page.

Continuations

• They’re functions

• They’re created with “magic” operators.

• They can be called more than once.

• They contain, other than the code, the state
of the world at the time they were created.

Continuations - Part II

• You don’t have to understand them to use
them.

Continuations - Part III

(defaction purchase (cart)
 (show “order-contents”)
 (show “payment”)
 (show “confirm”))

Example

UCW
the UnCommon Web application framework

Continuations in UCW

• Simulated by transforming the original
source code.

• Not a perfect solution (doesn’t handle every
construct in the original language) but it’s
more than enough for our needs.

• The state, the behaviour and the graphics of
every GUI element (window, menu, form,
navigation bar, …) are represented by a
component.

• Every component, just like a normal
function, is called and returns a value.

Components

• Every user action (following a link,
submitting a form) calls an action.

• An action can pass control to another
component (call), or return control (answer).

• When a component passes control to
another component it is replaced by the
other camponent.

Actions

• When a page is generated the state of the
application is saved.

• Before handling an action the state of the
application is restored to what is was.

Backtracking
Dealing with users who go back and take a different road.

• Every component must, if it’s visible on the
screen, be able to transform itself into
HTML.

• UCW provides two tools for generating
HTML: yaclml e tal.

Rendering

Library of lisp macros which allow html to be
embedded into the code:

(<:table :width “100%”
 (dolist (element list-of-things)
 (<:tr
 (<:td …)))

YACLML

Templating library which puts code inside the
HTML:

 <li tal:dolist=”$list”>
 <b tal:content=”$thing”>…

TAL

Example

examples/counter.lisp

The RERL Protocol

• The handling of every request/response pair
is specified in terms of classes and generic
functions.

• UCW is simply one possible implementation
of this protocol.

• continuation - what to do when this
component finishes.

• calling-component - who created this
component.

• render-on - method which generates the
HTML for this component.

class component

• application

• session

• request

• response

• current-frame

• window-component

class request-context
all the information regarding an http request/response

pair

• Handles an object (an application, a session
or a session-frame) within a request-context.

generic function service
the methods which do all the work

• method call-callback - call the handler
associated with an http request parameter.

• window-component - the “root”
component. this component must create the
HTML for the entire browser window (but
will rarely do this without the help of other
components)

class session-frame
a single interaction with the server

• method get-value - returns the value in the
session associated with a particular key.

class session
a set of interactions by the same user with the same

application

• url-prefix - the url space this application
controls.

• method make-request-context - create a new
request-context object.

• method find-session - given a request-
context returns (or creates) the session
object.

class application
set of entry-points and sessions.

• applications - the set of applications living
in the server.

• backend - The object which deals with
HTTP.

• method handle-request - deal with a pair of
http request and response objects.

class server
A UCW instance

