UnCommon Web

or: How | Learned to Stop Worrying and Love the
Web

* Marco Baringer <mb@bese.it>

* http://common-lisp.net/project/ucw

The Problem

* The tools don’t allow us to, directly, say
what we think.

It's HTTP’s fault

* HTTP, which is an asynchronous and
stateless protocol, considers every request/
response as an independant object.

* Developers consider every request and
response as a part of a sequence of
Interactions.

What do we want to say?

An application is not a set of
distinct pages as much as a
set of sequences of pages.

Example: First we show the
shopping cart page, then, if
the user wants, they can
continue to the payment info
page, finally they can view
the confirm order page.

Cart

-

Payment

-

Confirm

So What?

* When developers think about an application
they think in terms of what happens before
and after a particular page.

* Every page in the application represents a
noint within a well defined sequence and
nas a past and a future.

Continuations

e Continuations are a tool to work with the
“future.”

* They allow us to express, directly, what will
happpen after a user has seen a page.

Continuations - Part |l

* They’re functions
* They're created with “magic” operators.

* They can be called more than once.

* They contain, other than the code, the state
of the world at the time they were created.

Continuations - Part Il

* You don’t have to understand them to use
them.

Example

(defaction purchase (cart)
now “order-contents”)
now “payment”)
now “confirm”))

UCW

the UnCommon Web application framework

Continuations in UCW

» Simulated by transforming the original
source code.

* Not a perfect solution (doesn’t handle every
construct in the original language) but it’s
more than enough for our needs.

Components

* The state, the behaviour and the graphics of
every GUI element (window, menu, form,

navigation bar, ...) are represented by a
component.

* Every component, just like a normal
function, is called and returns a value.

UCW

= y "

/- - — g 1)

Actions

* Every user action (following a link,
submitting a form) calls an action.

* An action can pass control to another
component (call), or return control (answer).

* When a component passes control to
another component it is replaced by the
other camponent.

Backtracking

Dealing with users who go back and take a different road.

* When a page is generated the state of the
application is saved.

* Before handling an action the state of the
application is restored to what is was.

Rendering

* Every component must, if it’s visible on the

screen, be able to transform itself into
HTML.

» UCW provides two tools for generating
HTML: yaclml e tal.

YACLML

Library of lisp macros which allow html to be
embedded into the code:

(<:table :width “100%”
(dolist (element list-of-things)
(<:tr
(<:td ...)) B 10

TAL

Templating library which puts code inside the
HTML:

<li tal:dolist="$list”>
<b tal:content="$thing”>...

 TaAv,f

Example

examples/counter.lisp

The RERL Protocol

* The handling of every request/response pair
is specified in terms of classes and generic
functions.

« UCW is simply one possible implementation
of this protocol.

class component

e continuation - what to do when this
component finishes.

» calling-component - who created this
component.

» render-on - method which generates the
HTML for this component.

class request-context

all the information regarding an http request/response
pair

» application
* session

* request

* response

e current-frame

. :_'1.,...,.‘-; i
* window-component - vr-ﬁg

generic function service

the methods which do all the work

» Handles an object (an application, a session
or a session-frame) within a request-context.

class session-frame

a single interaction with the server

» method call-callback - call the handler
associated with an http request parameter.

* window-component - the “root”
component. this component must create the
HTML for the entire browser window (but
will rarely do this without the help of other
components)

> _-_':,,-

= y "

class session

a set of interactions by the same user with the same
application

* method get-value - returns the value in the
session associated with a particular key.

class application

set of entry-points and sessions.

» url-prefix - the url space this application
controls.

» method make-request-context - create a new
request-context object.

» method find-session - given a request-
context returns (or creates) the session
object.

class server
A UCW instance

» applications - the set of applications living
in the server.

* backend - The object which deals with
HTTP.

* method handle-request - deal with a pair of
http request and response objects.

